ပညာေရးလမ္းညြန္

  • Home
  • Myanmar
    • Internet
    • Market
    • Stock
  • English
    • UNIT 1
      • The Calendar
    • UNIT 2
      • TOO MUCH KNOWLEDGE MAKETH FOOLS
    • UNIT 3
      • THE MOON: A NICE PLACE TO VISIT?
    • UNIT 4
      • CLOCKS THROUGH TIME
    • UNIT 5
      • SELF-SERVICE AND THE SUPERMARKET
    • UNIT 6
      • ROBOTS
    • UNIT 7
      • DREAMS DO COME TRUE
    • UNIT 8
      • ADVERTISEMENTS: THE PROS AND CONS
    • UNIT 9
      • SLEEP AND DREAMS
    • UNIT 10
      • LOOKING GOOD
    • UNIT 11
      • MOSQUITO: GETTING TO KNOW THE ENEMY
    • UNIT 12
      • TRAVEL IN SOUTHEAST ASIA (I)
    • UNIT 13
      • TRAVEL IN SOUTHEAST ASIA (II)
    • UNIT 14
      • Helen Keller
    • English Grammar
      • Noun
  • Mathematics
    • CHAPTER 1
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 2
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 3
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 4
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 5
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 6
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 7
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 8
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 9
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 10
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • CHAPTER 11
      • IMPORTANT FOLULAE AND KNOWNEDGE
      • TEXT BOOK EXERCISES
      • 1 MARK EXERCISES
      • 3 MARK EXERCISES
      • 5 MARK EXERCISES
    • CHAPTER 12
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
  • Physics
    • Chapter (1)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (2)
      • PRESSUER
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (3)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (4)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (5)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (6)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (7)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (8)
      • COULOMB'S LAW
      • Example (1)
      • Exapme (2)
      • Exapme (3)
      • Exapme (4)
      • ELECTRIC FIELD AND ELECTRIC FIELD INTENSITY
      • Exapme (5)
      • Exapme (6)
      • Exapme (7)
      • Exapme (8)
      • Exapme (9)
      • ELECTRIC LINES OF FORCE
      • The Electric Field Around a Charged Metal Sphere
      • Lightning Conductor
      • The Electric Field in a Charged Conducting Object
      • Non-Uniform Electric Filed and Uniform Electric Field
      • Exercise 1
      • Exercise 2
      • Exercise 3
      • Exercise 4
      • Exercise 5
      • Exercise 6
      • Exercise 7
      • Exercise 8
      • Exercise 9
      • Exercise 10
      • Exercise 11
      • Exercise 12
      • Exercise 13
      • Exercise 14
      • Exercise 15
      • Exercise 16
      • Exercise 17
      • Exercise 18
      • Exercise 19
      • Exercise 20
      • Exercise 21
      • Exercise 22
      • Exercise 23
      • Exercise 24
      • Exercise 25
      • Exercise 26
      • Exercise 27
      • Exercise 28
      • Exercise 29
      • Exercise 30
      • Exercise 31
      • Exercise 32
      • Exercise 33
    • Chapter (9)
      • ELECTRIC POTENTIAL
      • Example 1
      • Example 2
      • Example 3
      • Example 4
      • The Part of the Charge and the Work Done
      • Example 5
      • Example 6
      • Equipotential Surfaces
      • ELECTRIC POTENTIAL OF THE EARTH
      • POTENTIAL BETWEEN TWO PARALLEL CHARGED PLATES
      • Example 7
      • Example 8
      • Example 9
      • Exercise 1
      • Exercise 2
      • Exercise 3
      • Exercise 4
      • Exercise 5
      • Exercise 6
      • Exercise 7
      • Exercise 8
      • Exercise 9
      • Exercise 10
      • Exercise 11
      • Exercise 12
      • Exercise 13
      • Exercise 14
      • Exercise 15
      • Exercise 16
      • Exercise 17
      • Exercise 18
      • Exercise 19
      • Exercise 20
    • Chapter (10)
      • CAPACITANCE
      • PARALLEL-PLATE CAPACITOR
      • Example 1
      • ENERGY OF A CAPACITOR
      • Example 2
      • CAPACITANCE OF PARALLEL-PLATE CAPACITORS
      • Example 3
      • Example 4
      • Example 5
      • Exercise 1
      • Exercise 2
      • Exercise 3
      • Exercise 4
      • Exercise 5
      • Exercise 6
      • Exercise 7
      • Exercise 8
      • Exercise 9
      • Exercise 10
      • Exercise 11
      • Exercise 12
      • Exercise 13
      • Exercise 14
      • Exercise 15
      • Exercise 16
      • Exercise 17
      • Exercise 18
      • Exercise 19
      • Exercise 20
    • Chapter (11)
      • CURRENT AND ELECTRIC CIRCUITS
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (12)
      • Example 1
      • Effects of Current
      • Sub Child Category 3
    • Chapter (13)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Chapter (14)
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
  • Chemistry
  • Biology
    • Child Category 1
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Child Category 2
    • Child Category 3
    • Child Category 4
  • Grammar
    • Noun
      • Sub Child Category 1
      • Sub Child Category 2
      • Sub Child Category 3
    • Pronoun
    • Adjective
    • Verb
    • Adverb
    • Preposition
    • Conjuction
    • Interjection

Friday, April 14, 2017

၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11

 Unknown     9:44 PM     No comments   


Chapter 11 ထဲက ၃ မွတ္တန္း တစ္ပုဒ္ေလာက္ကို ေက်ာင္းသားတိုင္း နားလည္လြယ္ေအာင္ အဆင့္တိုင္းကိုရွင္းျပထားပါတယ္။



Read More
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg

Thursday, April 13, 2017

THE CALENDAR

 Unknown     1:14 PM     English     No comments   


THE CALENDAR

 

Read the passage.

          It is easy to understand the calendar we use today.  It was not always so easy.  People had to try for thousands of years before they know how to put together days, weeks, months, and years.
          More than 2,000 years ago, scientists in Egypt made a calendar.  There were ten days in a week, three weeks in a month, and twelve months in a year.  This calendar showed a way to count weeks and months, but it was not scientific.
          It does not matter how many days are in a week, or in a month, any number can be used.  No one, however, can decide how lone a day or a year should be.  A day is the exact length of time it takes the earth to turn around one time.  A year is the length of time the earth takes to travel around the sun one time.  The Egyptians did not think about these scientific facts.  For them, 12 of their 30-days months made a year, but 360 days do not make a full year.
          What did they do about this problem?  They made a five-day holiday at the end of each year.  But even adding five holidays did not make the Egyptians' yearly calendar right.  It takes the earth a little more than 365 days to travel around the sum. To be exact, it takes 365 days, 5 hours, 48 minutes and 46 seconds.  For a long time people did not add these extra hours and minutes and seconds.
          It was like using a watch that runs slow.  The Egyptian calendar was slower than the exact sun year.  In four years it was about a day behind; in forty years the calendar was 10 days (a full Egyptian week) behind the sun.
          Many years later in Rome, Julius Caesar tried to fix the calendar.  He thought that a year should be 365 days and 6 hours long.  He added an extra day every four years.  The year with an extra day is called leap year. The year is really 365 days, 5 hours, 48 minutes and 46 seconds long.  Julius Caesar's calendar was almost twelve minutes too fast.  Twelve minutes is not much, but by the year 1582 scientists showed that the calendar was about 10 days faster than the sun.  Pope Gregory XIII wanted to make a better plan.
          It was easy to take 10 days ways from the calendar.  This made is right with the sun again.  There was still a problem: how to keep the calendar right in the future, year after year.
          Scientists tried one way, and then they tried another.  Finally, they decided to continue to have every fourth year as a leap year.  Then they solved the problem of the calendar going too fast.  They made a plan to take out three days every 400 years.  A year ending in 00 is not a leap year unless it can be divided evenly by 400.  The year 1600 was a leap year, but 1700, 1800 and 1900 were not.  The year 2000 was a leap year.
          This is the plan we use now.  Our calendar, named for Pope Gregory, is called the Gregorian Calendar.  It is not quite exact.  It is 26 seconds fast each year by the sun time.  Our calendar will not be fast by a whole day for at least 3,000 years.



ဘာသာျပန္




It is easy to understand the calendar we use today.  
ယေန႔ ကြ်န္ေတာ္တို႔အသံုးျပဳေနၾကေသာ ျပကၡဒိန္ကို နားလည္သေဘာက္ေပါက္ရန္ လြယ္ကူပါသည္။ 




It was not always so easy.
အျမဲတန္းလြယ္ကူခဲ့သည္ေတာ့မဟုတ္ပါ။ 


 People had to try for thousands of years before they know how to put together days, weeks, months, and years.
 လူတို႔သည္ ရက္ေတြ၊ သတင္းပတ္ေတြ၊ လေတြ နဲ႕ ႏွစ္ေတြကို အတူတြက္ဘယ္လိုထားမယ္ဆိုတာမသိခင္အခ်ိန္မွစ၍ ႏွစ္ေထာင္ေပါင္းမ်ားစြာၾကာေအာင္ စမ္းသပ္ႀကိဳးစားခဲ့ၾကရသည္။


More than 2,000 years ago, scientists in Egypt made a calendar. 
အီဂ်စ္ႏိုင္ငံတြင္ေနထိုင္ခဲ့ၾကေသာ သိပၸံပညာရွင္မ်ားသည္ ျပကၡဒိန္တစ္ခုကို လြန္ခဲ့ေသာႏွစ္ေပါင္း ၂၀၀၀ ေက်ာ္ေက်ာ္ေလာက္တြင္ တီထြင္ခဲ့ၾကသည္။ 


 There were ten days in a week, three weeks in a month, and twelve months in a year. 
 ၎ျပကၡဒိန္တြင္ တစ္ပတ္တြင္ ၁၀ ရက္၊ တစ္လတြင္ ၃ ပတ္ႏွင့္ တစ္ႏွစ္တြင္ ၁၂ လ ရွိခဲ့ပါသည္။ 


This calendar showed a way to count weeks and months, but it was not scientific.
၎ျပကၡဒိန္သည္ လမ်ားႏွင့္သတင္းပတ္မ်ား ေရတြက္ျပေသာ နည္းလမ္းတစ္ခုသာျပသခဲ့သည္။ သို႔ေသာ ၎ျပကၡဒိန္သည္ သိပၸံနည္းက်ေတာ့ မဟုတ္ခဲ့ပါ။


It does not matter how many days are in a week, or in a month, any number can be used.
တစ္လတြင္ေသာ္လည္းေကာင္း တစ္ပတ္တြင္ေသာ္လည္းေကာင္း ရက္မည္မွ်ရွိရမည့္ဟုေသာ အခ်က္သည္ အေရးမၾကီးပါ။ ႀကိဳက္ႏွစ္သက္ရာအေရအတြက္ကို အသံုးျပဳႏိုင္ပါသည္။


 No one, however, can decide how lone a day or a year should be.
သို႔ေသာ္လည္း တစ္ႏွစ္တြင္ေသာ္လည္းေကာင္း၊ တစ္လတြင္ေသာ္လည္းေကာင္း မည္မွ်ၾကာသင့္သည္ကိုမူ မည္သူကမွ် မဆံုးျဖတ္ႏိုင္ပါ။


  A day is the exact length of time it takes the earth to turn around one time. 
တစ္ရက္ဆိုသည္မွာ ကမၻာေျမႀကီးက တစ္ႀကိမ္လွည္ပတ္ရန္ၾကာေသာ၊ တိက်ေသာ အခ်ိန္အတိုင္းအတာျဖစ္သည္။



  A year is the length of time the earth takes to travel around the sun one time. 
 တစ္ႏွစ္ဆိုသည္မွာလည္း ကမၻာက ေနကို တစ္ၾကိမ္ပတ္သြားရန္ ၾကာေသာအခ်ိန္အတိုင္းအတာျဖစ္ပါသည္။


  The Egyptians did not think about these scientific facts. 
  အီဂ်စ္တို႔သည္ ထိုကဲ့သို႔သိပၸံနည္းက်ေသာအခ်က္မ်ားႏ်ွင့္ပတ္သက္ၿပီး မစဥ္းစားခဲ့ၾကပါ။



 For them, 12 of their 30-days months made a year, but 360 days do not make a full year.
 သူတို႔အတြက္မူ၊  ၃၀ ရက္စီပါေသာ ၁၂ လ သည္ တစ္နွစ္ကိုျပဳလုပ္ေစခဲ့ေသာ္လည္း ရက္ေပါင္း ၃၆၀ သည္ တစ္ႏွစ္ျပည့္ကို မျဖစ္ေစခဲ့ပါ။



What did they do about this problem?
ထို႔ျပႆ     နာႏွင့္ပတ္သက္ၿပီး သူတို႔ဘာလုပ္ခဲ့ပါသလဲး။


They made a five-day holiday at the end of each year. 
သူတို႔သည္ နွစ္စဥ္ႏွစ္တိုင္း၏အဆံုးတြင္ မေရတြက္ေသာ အလြတ္ ၅ ရက္ ကိုျပဳလုပ္ေစခဲ့သည္။


But even adding five holidays did not make the Egyptians' yearly calendar right.
သို႔ေသာ္ အလြတ္ ၅ ရက္ကို ေပါင္းထည့္ေနသည္တိုင္ေအာင္ အီဂ်စ္တို႔၏ႏွစ္စဥ္ျပကၡဒိန္သည္ မွတ္ကန္ေအာင္မျဖစ္ေစခဲ့ပါ။  



  It takes the earth a little more than 365 days to travel around the sum.
 ကမၻာၾကီးသည္ ေနကိုလည့္ပတ္သြားရန္ ၃၆၅ ရက္ထက္ အနည္းငယ္မွ်ပိုၾကာေနသည္။


 To be exact, it takes 365 days, 5 hours, 48 minutes and 46 seconds. 
အတိအက်ဆိုေသာ္  ၃၆၅ ရက္၊ ၅ နာရီ၊ ၄၈ မိနစ္ႏွင့္ ၄၆ စကၠန္႔ ၾကာေစသည္။ 


  For a long time people did not add these extra hours and minutes and seconds.
ထို႔သို႔ေသာ အပိုနာရီ၊ အပိုမိနစ္ ႏွင့္ အပိုစကၠန္႕မ်ားကို လူတို႔သည္ အခိ်န္အေတာ္အတန္ၾကာေအာင္ မေပါင္းထည့္ခဲ့ၾကပါ။

  It was like using a watch that runs slow. 
ထိုအရာသည္ ေနာက္က်ေနေသာ လက္ပတ္နာရီတစ္လံုးကို အသံုးျပဳေနတာႏွင့္ဆင္တူပါသည္။ 


  The Egyptian calendar was slower than the exact sun year. 
 အီဂ်စ္ျပကၡဒိန္သည္ တိက်ေသာေနႏွစ္ထက္ ေနာက္က်ခဲ့ပါသည္။



 In four years it was about a day behind; in forty years the calendar was 10 days (a full Egyptian week) behind the sun.
ေလးႏွစ္တြင္ တစ္ရက္ခန္႕ေလာက္ ေနာက္က်ျပီး၊ ႏွစ္ေလးဆယ္တြင္ ထိုျပကၡဒိန္သည္ ၁၀ ခန္႔ (အီဂ်စ္သတင္းပတ္တစ္ပတ္) ေလာက္ ေနေနာက္တြင္ ေနာက္က်ေနပါသည္။


   Many years later in Rome, Julius Caesar tried to fix the calendar. 
 ႏွစ္ေပါင္းမ်ားစြာၾကာလာေတာ့အခါ ေရာမၿမိဳ႕တြင္ Julius Caesar သည္ ထိုျပကၡဒိန္ကို ျပင္ဆင္ရန္ႀကိဳးစားစမ္းသပ္ခဲ့သည္။


 He thought that a year should be 365 days and 6 hours long. 
 သူသည္ တစ္ႏွစ္သည္ ၃၆၅ ရက္ႏွင့္ ၆ နာရီၾကာလိမ့္မည္ဟု ထင္ခဲ့သည္။



  He added an extra day every four years. 
သူသည္ ေလးႏွစ္တိုင္းတြင္ ရက္ပိုတစ္ရက္ေပါင္းထည့္ခဲ့သည္။ 


  The year with an extra day is called leap year.
အပိုတစ္ရက္ပါေသာ ႏွစ္ကို ရက္ထပ္ႏွစ္ဟုေခၚသည္။ 


 The year is really 365 days, 5 hours, 48 minutes and 46 seconds long. 
 အမွန္တကယ္အားျဖင့္  တစ္ႏွစ္သည္ ၃၆၅ ရက္၊ ၅ နာရီ၊ ၄၈ မိနစ္ႏွင့္ ၄၆ စကၠန္႕ ၾကာျမင့္သည္။



 Julius Caesar's calendar was almost twelve minutes too fast. 
 Julius Caesar ၏ ျပကၡဒိန္သည္လည္း ၁၂ မိနစ္ႏွီးပါးေလာက္ျမန္ေနပါေသးသည္။



 Twelve minutes is not much, but by the year 1582 scientists showed that the calendar was about 10 days faster than the sun. 
၁၂ မိနစ္သည္ မ်ားျပားသည္မဟုတ္၊ သို႔ေသာ္ သကၠရာဇ္ ၁၅၈၂ ခုႏွစ္မတိုင္မွီတြင္ သိပၸံပညာရွင္တို႔သည္ ထိုျပကၡဒိန္သည္လည္း ေနထက္ ၁၀ ရက္ခန္႔ေလာက္ ပိုျမန္ေနေၾကာင္းကို သက္ေသျပခဲ့ၾကသည္။



 Pope Gregory XIII wanted to make a better plan.
 ၁၃ ပါးေျမာက္ျဖစ္ေသာ ပုတ္ရဟန္းမင္း Gregory သည္ ပိုေကာင္းေသာ အစီအစဥ္တစ္ခုကို ဖန္တီးခ်င္ခဲ့သည္။


It was easy to take 10 days ways from the calendar. 
ထိုျပကၡဒိန္မွ ၁၀ ရက္ကိုဖယ္ထုတ္ရန္သည္ လြယ္ကူခဲ့သည္။ 


 This made is right with the sun again.
ထိုသိုျပဳလုပ္ျခင္းသည္ ေနာက္တစ္ၾကိမ္ ေနႏွင့္ျပန္မွန္ကန္ေစပါသည္။ 


  There was still a problem: how to keep the calendar right in the future, year after year.
 တစ္ႏွစ္ျပီးတစ္ႏွစ္ အနာဂါတ္တြင္ ထိုျပကၡဒိန္ေကာင္ မွန္ကန္ေအာင္မည့္သို႔ထိန္းသိမ္းမည့္ဆိုေသာ ျပႆ     နာကေတာ့ရွိေနတံုးပင္ျဖစ္သည္။


 Scientists tried one way, and then they tried another.
သိပၸံပညာရွင္တို႔သည္ နည္းလမ္းတစ္မ်ဳိးကို စမ္းသပ္ခဲ့ၾကျပီး၊ အျခားနည္းလမ္းမ်ားကို စမ္းသပ္ခဲ့ၾကသည္။



  Finally, they decided to continue to have every fourth year as a leap year. 
 ေနာက္ဆံုးတြင္ သူတို႔သည္ ေလးႏွစ္တိုင္းကို ရက္ထပ္ႏွစ္အျဖစ္ ဆက္တိုက္ဆက္တိုက္ သတ္မွတ္ရန္ဆံုးျဖတ္ခဲ့ၾကသည္။



 Then they solved the problem of the calendar going too fast. 
ထို႔ေနာက္ သူတို႔သည္ ျမန္ျမန္သြားေနေသာထိုျပကၡဒိန္၏ျပႆ     နာကို ေျဖရွင္းခဲ့ၾကသည္။


 They made a plan to take out three days every 400 years.
သူတို႔သည္ ႏွစ္ ၄၀၀ တိုင္းတြင္ ၃ ရက္ ကိုဖယ္ထုတ္ရန္ အစဥ္အစီတစ္ခုခ်မွတ္ခဲ့သည္။ 



  A year ending in 00 is not a leap year unless it can be divided evenly by 400. 
 ၄၀၀ ျဖင့္ ျပတ္ျပတ္သားသား မစားႏုိင္လွ်င္ သုည၊သုည ျဖင့္ဆံုးေသာႏ်ွစ္သည္ ရက္ထပ္ႏွစ္မဟုတ္ပါ။


  The year 1600 was a leap year, but 1700, 1800 and 1900 were not.  The year 2000 was a leap year.
 သကၠရာဇ္ ၁၆၀၀ ခုႏွစ္သည္ ရက္ထပ္ႏွစ္တစ္ႏွစ္ျဖစ္ခဲ့ေသာ္လည္။ ၁၇၀၀၊ ၁၈၀၀ ႏွင့္ ၁၉၀၀ တို႔သည္ ရက္ထပ္ႏွစ္မဟုတ္ခဲ့ၾကပါ။ သကၠရာဇ္ ၂၀၀၀ ခုႏွစ္သည္ ရက္ထပ္ႏွစ္ျဖစ္ခဲ့သည္။


This is the plan we use now. 
ဤအရာသည္ ယခု ကြ်န္ေတာ္တို႔အသံုးျပဳေနေသာ အစီအစဥ္ျဖစ္သည္။


 Our calendar, named for Pope Gregory, is called the Gregorian Calendar.
Pope Gregory ကို ဂုဏ္ျပဳထားေသာ ကြ်န္ေတာ္တို႔ ျပကၡဒိန္ကို Gregorian Calendar ဟုေခၚသည္။

  It is not quite exact. 
ဤျပကၡဒိန္သည္လည္း အရမ္းတိက်ေနသည္မဟုတ္ပါ။ 


 It is 26 seconds fast each year by the sun time. 
ႏွစ္တိုင္းႏွစ္တိုင္း ေနအခ်ိန္ထက္ ၂၆ စကၠန္႔  ပိုျမန္ေနပါသည္။


 Our calendar will not be fast by a whole day for at least 3,000 years.
အနည္းဆံုး ႏွစ္ေပါင္း ၃၀၀၀ ၾကာသြားသည္တိုင္ေအာင္ ကြ်န္ေတာ္တို႔ျပကၡဒိန္သည္ တစ္ရက္လံုးခန္႔မွ် ပိုျမန္လိမ့္မည္မဟုတ္ပါ။
 
Read More
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg

၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11

 Unknown     11:27 AM     Mathematics     No comments   

2013 မႏၱေလး ေမးခြန္းေဟာင္း



Read More
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg

Wednesday, April 12, 2017

၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11

 Unknown     3:23 AM     No comments   

Chapter 11 ထဲက ၃ မွတ္တန္း တစ္ပုဒ္ေလာက္ကို ေက်ာင္းသားတိုင္း နားလည္လြယ္ေအာင္ အဆင့္တိုင္းကိုရွင္းျပထားပါတယ္။


Read More
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg

CHAPTER 11

 Unknown     1:57 AM     Mathematics     No comments   

Trigonometry

Trigonometry သင္ခန္းစာသည္ ၁၀ တန္းေက်ာင္းသား၊ ေက်ာင္းသူမ်ားအတြက္ ေအာင္မွတ္ေက်ာ္ျပီးဂုဏ္ထူးမွန္းသူမ်ားအတြက္ မသိမျဖစ္တဲ့ အထူးေလးက်င့္ထားရမယ့္သင္ခန္းစာပဲျဖစ္ပါတယ္။ 10 တန္းေက်ာင္းသားမွားအတြက္ Trigonometry သင္ခန္းစာကို အပိုင္းႏွစ္ပိုင္းျဖင့္ ေလ့လာစရာမ်ားျဖင့္ ျပဌာန္းေပးထားပါတယ္။ ပထမအပိုင္းမွာ စက္၀ိုင္းေလးစိတ္ေပၚက six trigonometric ration Formulae ေတြပၚမွအေျခခံတြက္ခ်က္တဲ့သင္ခန္းစာနဲ႔ ဒုတိယအပိုင္းမွTriangle ေပၚမွာအေျခခဲ့တဲ့ Law of sine and Law of Cosine ဆိုတဲ့ formulae ေတြအေပၚအေျခခံတြက္ခ်က္မွာပါ။ Trigonometric ေလးက်င့္ခန္းမ်ားသည္ က်က္မွတ္ထားေသာ formulae မ်ားကိုသာ အစားထိုးတြက္ခ်က္ထားျဖစ္ေသာေၾကာင့္ သင္ခန္းစာပါ formulae မ်ားကိုေတာ့ မရမေန ရႊတ္ဖတ္၊ ေရးက်က္၊ စူးစိုက္ၾကည့္က်က္မွတ္ေလးက်င့္ထားရပါမယ္။ ကြ်န္ေတာ့္က်က္မွတ္ပံုကေတာ့ formula တစ္ခုခ်င္းစီကို မ်က္စိ၊ ႏွတ္ျဖင့္ အာရံုစိုက္က်က္မွတ္ျပီးေသာ္ က်က္မွတ္ထားေသာ formula တိုင္းကို အေၾကာင္း ၁၀ ေလာက္ခ်ေရးက်က္မွတ္ပါသည္။ ၾကီးျမတ္တဲ့ ပညာေတြမွာ အလြယ္မရႏိုင္တာကို ေတာ့ ေက်ာင္းသားမ်ားသတိထားေစခ်င္ပါတယ္။

Trigonometric Rations for Special Angles
Trigonometry ဆုိင္ရာ နယ္ပယ္ ၆ မ်ိဳးရွိပါတယ္။
  1. (sin)              sine
  2. (cos)             cosine
  3. (tan)             tangent
  4. (cot)             cotangent
  5. (sec)             secant
  6. (cosec)         co-secant       တို႔ပဲျဖစ္ပါတယ္။



 O = opposite side              (မ်က္ႏွင္ခ်င္းဆိုင္ အနား)
 A = adjacent side              ( နီးစပ္ အနား)
 H = hypotenuse side          ( ေထာင့္မွန္ခံ အနား)
 
 အထက္ပါ ဇယားအရ sin ဆိုတာ O ကို တည္ျပီး H  ျဖင့္စားေနသည္။ cos ဆိုသည္မွာလည္း  A  ကိုတည္ၿပီး  H   ျဖင့္စားေနသည္ဟု စသည္ျဖင့္ ၆ ခုစလံုးမွတ္သားထားပါ။ အေပၚဖက္မွ sin, cos, tan, cot, sec, cosec လို႔ အစဥ္လိုက္မွတ္သားထားပါ၊ ပိုင္းေ၀မ်ားကိုလည္း O A O A H H ႏွင့္ ပိုင္းေျခကို ေနာက္က cosec မွ sin အထိ O A O A H H ျဖင့္ေျပာင္းျပန္စီလိုက္ေသာ က်က္စရာမလို မွတ္စရာသာလိုသည္။

 အထက္ပါ ႀတိဂံႏွစ္ခု နဲ႔ ဇယားကို မ်က္စိနဲ႔ က်က္မွတ္ထားရင္ six trigonometric တန္ဖိုးကို ခ်ေရးႏိုင္ပါလိမ္မယ္။ ပထမ ႀတိဂံမွ 30 degree ၏ opposite side သည္  1 ျဖစ္ၿပီး၊ ၏ adjacent side သည္ sq root 3 ျဖစ္ျပီး 90 ဒီဂရီအတြက္ ေထာင့္မွန္ခံအနားသည္ 2   ျဖစ္သည္။ 60 degree အတြက္ မ်က္ႏွာခ်င္းဆိုင္အနား သည္ sq root 3 ျဖစ္ျပီး နီးစပ္အနားသည္ 1 ျဖစ္သည္။ sin 45 degree အတြက္ ဒုတိယ ႀတိဂံကိုၾကည့္ပါ။
စသည့္ျဖင့္ အထက္ပါရွင့္ခ်က္မ်ားကို နားလည္ေသာ 30, 45, 60 ေထာင့္မ်ားအတြက္ six trigonometric ratio မ်ားကို အလြတ္ခ်ေရးႏိုင္လိမ္မည္။ သို႔ေသာ တြက္ခ်က္ရာတြင္ အလြတ္အာဂုဏ္ေဆာင္ႏိုင္သူသည္ ပိုသာသည္။ အထက္ပါ နည္းအတိုင္းတြယ္ယူေသာ္ ေအာက္ပါဇယားအတိုင္း ရေအာင္ေလ့က်င့္ယူၿပီးက်က္မွတ္ထားက်ပါ။ က်က္ထားတာေရာမယ္ထင္ရင္ေတာ့ အထက္ပါ ႀတိဂံႏ်ွစ္ခုႏွင့္ O A O A H H ကို မွတ္မိလွ်င္လည္း အလြယ္ရွာႏိုင္ပါမည္။

 
cos ဆိုတာ X ၀င္ရိုးကိုဆိုလိုၿပီး sin ဆိုတာ Y ၀င္ရုိးကို ်ဆိုလိုသည္။ X ၀င္ရိုးညာဘက္ ကို +X ၊ ဘယ္ဘက္ကို - X ၊ အေပၚတိုင္ကို + Y၊ ေအာက္ဘက္တိုင္ကို - Y စသည္ျဖင့္သတ္မွတ္ထားသည္။
  1. sin ေျပာင္းျပန္ cosec
  2. cos ေျပာင္းျပန္ sec 
  3. tan ေျပာင္းျပန္ cot 
  4. tan လိုခ်င္ sin ကိုတည္ cos ျဖင့္စား
  5. cot လိုခ်င္ cos ကိုတည္ sin ျဖင့္စား        စသည္ျဖင့္က်က္မွတ္ထားပါ။
စက္၀ိုင္းတြက္ အပိုင္း (Quadrant) ေလးပိုင္းပါသည္။

ပထမ အပိုင္းထဲတြင္ sin, cos, tan, cot, sec, cosec စသည့္ ၆ ခုလံုးသည္ positive signs မ်ားပိုင္္ဆိုင္ၾကျပီး ဒုတိယ Quadrant တြင္ sin ႏွင့္  sin ၏ေျပာင္းျပန္ျဖစ္ေသာ cosec စသည့္ ႏွစ္ခု တို႔သာ positive signs မ်ားပိုင္ဆိုင္ၾကၿပီး က်န္ေသာ cos, tan, cot, sec ေလးခုသည္ negative signs မ်ားပိုင္ဆိုင္ၾကသည္။ အထက္ပါပုံ၏ Quadrant မ်ားကိုလည္း လြယ္ကူသေဘာေပါက္မည္ထင္ပါသည္။



ေလးက်င့္ခန္းမ်ားတြက္ခ်က္ရန္ အထက္ပါအေဘာတရားမ်ားအျပင္ formula ေလးမ်ဳးိကိုလည္းက်က္မွတ္ထားရမည္။












Read More
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg
Newer Posts Older Posts Home

Popular Posts

  • DREAMS DO COME TRUE
    DREAMS DO COME TRUE   Read the passage           My mother and I were dreamers. When the days were soft and tender, we sat on ...
  • TOO MUCH KNOWLEDGE MAKETH FOOLS
    TOO MUCH KNOWLEDGE MAKETH FOOLS Read the passage.            Once upon a time, there were four youths studying under the fa...
  • CHAPTER 11
    Trigonometry Trigonometry သင္ခန္းစာသည္ ၁၀ တန္းေက်ာင္းသား၊ ေက်ာင္းသူမ်ားအတြက္ ေအာင္မွတ္ေက်ာ္ျပီးဂုဏ္ထူးမွန္းသူမ်ားအတြက္ မသိမျဖစ္တဲ့ အထူးေလး...
  • THE MOON: A NICE PLACE TO VISIT?
    THE MOON: A NICE PLACE TO VISIT?     Read the passage.              The moon has been described by songwriters and poets ...
  • TRAVEL IN SOUTHEAST ASIA (II)
    UNIT – 13 TRAVEL IN SOUTHEAST ASIA (II) Read the passage.            The following are descriptions of the to...
  • MOSQUITO: GETTING TO KNOW THE ENEMY
    UNIT - 11 MOSQUITO: GETTING TO KNOW THE ENEMY Read the passage.           Nearly two million species of insects , gr...
  • Helen Keller
    UNIT – 14 Helen Keller     Read the passage.   PART I           On 27 th June , 1880, a baby gi...
  • TRAVEL IN SOUTHEAST ASIA (I)
    UNIT-12 TRAVEL IN SOUTHEAST ASIA (I) Read the passage.           Travelling in Southeast Asia can be very exciting sinc...
  • THE CALENDAR
    THE CALENDAR   Read the passage.           It is easy to understand the calendar we use today.   It was not always so easy. ...
  • SLEEP AND DREAMS
    SLEEP AND DREAMS Read the passage. "Oh sleep! It is a gentle thing, Beloved from pole to pole."           Sa...

Recent Posts

Categories

  • English
  • Grammar
  • Mathematics
  • Physics

Unordered List

Pages

  • Home

Text Widget

Blog Archive

  • ▼  2017 (59)
    • ►  September (13)
    • ▼  April (5)
      • ၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11
      • THE CALENDAR
      • ၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11
      • ၂၀၁၃ ခုႏွစ္တြင္ ေမးခဲ့ေသာ Chapter 11
      • CHAPTER 11
    • ►  March (1)
    • ►  February (38)
    • ►  January (2)
Powered by Blogger.

Sample Text

Copyright © ပညာေရးလမ္းညြန္ | Powered by Blogger
Design by Hardeep Asrani | Blogger Theme by NewBloggerThemes.com | Distributed By Gooyaabi Templates